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ABSTRACT

Musicians and nonmusicians alike use rhythmic sound ges-
tures, such as tapping and beatboxing, to express drum pat-
terns. While these gestures effectively communicate mu-
sical ideas, realizing these ideas as fully-produced drum
recordings can be time-consuming, potentially disrupt-
ing many creative workflows. To bridge this gap, we
present TRIA (The Rhythm In Anything), a masked trans-
former model for mapping rhythmic sound gestures to
high-fidelity drum recordings. Given an audio prompt of
the desired rhythmic pattern and a second prompt to rep-
resent drumkit timbre, TRIA produces audio of a drumkit
playing the desired rhythm (with appropriate elaborations)
in the desired timbre. Subjective and objective evaluations
show that a TRIA model trained on less than 10 hours
of publicly-available drum data can generate high-quality,
faithful realizations of sound gestures across a wide range
of timbres in a zero-shot manner.

1. INTRODUCTION

Sound gestures such as tapping and beatboxing provide a
convenient and idiomatic means of expressing rhythmic
ideas. Rather than “literally” specifying a rhythmic idea
through one-to-one imitation, sound gestures often cap-
ture a reduced, high-level representation of the desired
rhythm—for instance, a beatboxer may only voice one el-
ement where many have simultaneous onsets, or leave cer-
tain elements unvoiced and implied. Realizing these ges-
tures as fully-produced drum arrangements often requires
many steps: the voiced sound elements in a gesture must
be mapped to appropriate drum parts, unvoiced or implied
elements must be plausibly reconstructed, the resulting ar-
rangement must be performed and recorded or sequenced
and synthesized digitally in audio editing software, and the
final recording may require further processing to shape the
timbre satisfactorily. By contrast, many creative workflows
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Figure 1. TRIA conditions generation of a new drum
recording on two prompts: the timbre of an example drum
recording (illustrated by a spectrogram), and the rhythm of
a sound gesture (the dualized features in Section 3.1).

may benefit from the ability to rapidly generate diverse
full-drumkit realizations of rhythmic sound gestures.

To bridge this gap, we propose TRIA (The Rhythm In
Anything), a masked transformer model for mapping arbi-
trary rhythmic sound gestures to high-fidelity drum record-
ings. Given two audio prompts—one specifying the ba-
sic desired rhythm via a sound gesture, and one specify-
ing the desired drum timbre via an example recording—
TRIA synthesizes full-drumkit audio playing a fleshed-
out arrangement of the desired rhythm in the desired tim-
bre. TRIA can faithfully realize sound gestures in unseen
timbres in a zero-shot manner despite its relatively small
model size (43M trainable parameters) and training dataset
(less than 10 hours of publicly-available drum recordings
from MusDB18-HQ [1]). Through both quantitative com-
parisons and qualitative human listening evaluations, we
demonstrate that TRIA matches or exceeds the perfor-
mance of a 1-billion parameter state-of-the-art model [2]
trained on 20, 000 hours of public and private data in con-
verting sound gestures to drum recordings.

Our contributions are as follows:

1. A model capable of mapping arbitrary rhythmic
sound gestures to high-fidelity drum recordings us-
ing drum timbres specified at inference time

2. A dualized representation that lets the model cap-
ture salient rhythmic structure across drum and non-
drum sound classes

3. Subjective and objective evaluations showing the
importance of the dualized representation and the



Figure 2. The proposed TRIA system. During training (left), acoustic tokens of a tokenized drum recording are predicted,
conditioned on surrounding unmasked tokens and rhythm features extracted from an augmented version of the recording;
we illustrate three training examples. During inference (right), we fix the timbre prompt as a prefix and predict a masked
suffix conditioned on aligned features extracted from the rhythm prompt. Inference predicts tokens in coarse-to-fine order.

model’s ability to generate musically-pleasing trans-
lations that adhere to rhythm and timbre prompts

We provide audio examples and code on our webpage. 1

2. RELATED WORK

The translation of simple rhythmic gestures into full drum
beats has been explored in the symbolic domain, notably in
the GrooVAE models proposed by Gillick et al. [3]. While
these allow for mapping single-voice MIDI drum patterns
to full-drumkit expressive MIDI performances, they do not
allow for audio-prompted rhythm or timbre specification.

In the audio domain, Santos & Cardoso applied RAVE
[4] models to a tap-to-drums translation task [5]. However,
RAVE does not support zero-shot audio-prompted timbre
specification, but instead requires re-training for each new
specified timbre. In general, recent neural network-based
timbre transfer systems are similarly constrained or else
support only pitched instruments [6, 7]. One exception is
MelodyFlow [2], which performs text-guided audio edit-
ing via latent diffusion inversion, hypothetically allowing
for the specification of arbitrary timbres via text prompts.
We perform extensive comparisons between our proposed
system and MelodyFlow in Section 4.

A number of systems use transcription to translate beat-
box audio into drum recordings via synthesis from a pre-
dicted MIDI representation, but generally require user-
specific calibration for accurate transcription and do not
support audio-prompted timbre specification [8,9]. In gen-
eral, transcription-based systems are constrained to nar-
row sound gesture types with well-defined audio-symbol
mappings or available annotated data for supervised train-
ing (e.g., beatboxing), and limited to “literal” mappings
of timbres onto atomic sound events. By contrast, we
propose an audio-prompted, self-supervised approach for

1 https://therhythminanything.github.io/

mapping simple rhythmic gestures to potentially complex
full-drumkit recordings, allowing for the generation of ar-
rangement details not explicit in the rhythm gesture.

Previous works have hypothesized that musicians of-
ten perceive and arrange drum patterns using implicit two-
voice “dualized” representations that oscillate between low
and high states [10, 11]. However, the use of dualized rep-
resentations for music generation has been limited to the
symbolic domain [12]. Our proposed system obtains du-
alized representations from audio (Section 3.1) to guide
the generation of drum audio, letting us specify rhythmic
structure with non-drum sounds (e.g. finger tapping).

Finally, our work differs from prior work on generat-
ing symbolic rhythm patterns [13–15], drum loops [16,17],
and drum samples [18–20] in that we seek to convert sound
gestures into audio-domain full drumkit performances.

3. METHOD

We next describe the design of the proposed TRIA system.
Architecture: Similar to VampNet [21], TRIA is a

transformer-based masked language model. TRIA consists
of 12 standard transformer blocks, each with hidden size
h = 512, 8 attention heads, and rotary positional encoding
[22], resulting in 43 million trainable parameters.

Audio Tokenization: TRIA predicts acoustic tokens
produced by Descript Audio Codec (DAC) [23]. Within
DAC, audio is segmented into a series of T frames, each of
which is mapped to a vector representation via a fully con-
volutional encoder. Encoded vectors are quantized with a
hierarchical sequence of C vector-quantizers, each with its
own codebook. Each quantizer encodes the residual be-
tween the original and the quantized representation pro-
duced by the previous quantizers. Quantized vectors are
represented by their codebook indices, resulting in a token
representation of C codebooks by T frames. A matched
decoder converts C × T token representations into audio.

https://therhythminanything.github.io/


Masked Language Modeling: TRIA generates drum
audio by predicting missing or “masked” DAC tokens
within a partially-masked “buffer” of size C × T , condi-
tioned on unmasked tokens (representing the target tim-
bre and generated content), as is typical for masked token
modeling. TRIA, however, also conditions generation on
aligned rhythm features representing the target rhythm (see
Section 3.1). Once all masked tokens are predicted, they
are mapped to 44.1kHz mono audio via the DAC decoder.

To produce predictions for masked tokens in the buffer
within a specific codebook c ∈ [0, C − 1], all tokens in
the buffer are first mapped to continuous vectors of size h
via separate learned embedding tables per codebook, with
masked tokens mapped to a single learned “mask” embed-
ding shared across all codebooks. Recall that the tokens
in every codebook at level c′ > c correct the residual er-
ror of the token at level c. Therefore, if a token at level c
is masked, all corresponding embedding vectors in code-
books c′ > c are zeroed. Embedding vectors are then
summed across codebooks to obtain a sequence of shape
h × T . Rhythm features (Section 3.1) are projected to the
hidden dimension and zeroed for frames in which there
are no masked tokens, resulting in a corresponding con-
ditioning sequence of shape h×T . The two sequences are
summed and passed to the transformer, which predicts a
probability distribution over tokens in codebook c at each
frame via one of C codebook-specific projection layers.

Inference: At inference, we take as inputs a timbre
prompt (drum) recording and a rhythm prompt (sound ges-
ture) recording. We construct a buffer in which the tok-
enized timbre prompt serves as an unmasked prefix, with
all subsequent frames (corresponding to the length of the
rhythm prompt) fully masked. We compute rhythm fea-
tures aligned to this masked suffix from the rhythm prompt.

We then perform SoundStorm-style inference [24] to
iteratively predict masked tokens in each codebook in
coarse-to-fine order, using the schedule of Chang et al. [25]
to gradually unmask or “confirm” tokens in the suffix.
We adopt temperature-based nondeterministic unmasking
from VampNet and causal bias from StemGen [26] to fa-
vor unmasking earlier tokens in the buffer first.

Thus, we fill in the masked suffix using timbral infor-
mation from the timbre prompt and rhythmic information
from the rhythm prompt, resulting in a generation that ad-
heres to both prompts. By specifying the number of in-
ference iterations over which each codebook is unmasked,
we can expend more compute on challenging high-entropy
early generation steps and less on highly-determined later
steps. For all experiments reported in this paper, we use
an inference schedule of {8, 8, 8, 8, 8, 4, 4, 4, 4} iterations
for DAC’s 9 respective codebooks in coarse-to-fine order,
classifier-free guidance [27] weight 2.0, unmasking tem-
perature 10.0, and causal bias 1.0.

Training: At each training iteration, we sample a drum
recording that serves as both timbre and rhythm prompt,
tokenizing with DAC to obtain a buffer and computing
rhythm features at a matching temporal resolution. We
select a random codebook and a random span of consec-

Figure 3. Results of the listener preference evaluation de-
tailed in Section 4.3. We plot win rates for TRIA and
MelodyFlow generations from rhythm prompts sampled
from the AVP and TapTamDrum (TTD) datasets, as well
as random anchors from MoisesDB drums.

utive frames covering 50% to 75% of the buffer length,
and mask a subset of tokens within this codebook and
span according to the cosine schedule proposed by Chang
et al. [25]; we then compute cross-entropy loss between
TRIA’s predicted distributions at masked token positions
and the corresponding ground-truth tokens. To allow TRIA
to process rhythm prompts from a variety of sound sources
and recording conditions, we apply noise, band-pass filter-
ing, pitch shift, phase shift, and equalization to the rhythm
prompt audio with independent 25% probabilities at each
iteration. To provide control over the degree of adherence
to the rhythm prompt, we implement classifier-free guid-
ance [27] by zeroing rhythm features in 20% of training
iterations to learn unconditional mappings, and then per-
forming weighted interpolation between unconditional and
conditional predictions at inference time.

We train all TRIA models on drums from a 90% split
of the MusDBHQ-18 dataset [1], totaling 8 hours of audio.
We train on 6-second random excerpts for 100, 000 itera-
tions at a batch size of 48 on 4× NVIDIA A10G GPUs,
requiring ∼ 27 hours per model. Training and inference
are illustrated in Figure 2.

3.1 Dualized Rhythm Representation

To allow inference on arbitrary sound gestures while train-
ing only on drum audio, we require (1) timbre-rhythm dis-
entanglement, with timbre information for the prediction
of masked token spans provided by unmasked tokens out-
side the span and rhythm information provided by aligned
rhythm features within the span; and (2) a rhythm feature
representation that captures the structure of both drums
and sound gestures with vastly different frequency energy
distributions. If timbre-rhythm disentanglement is not en-
forced, e.g. if timbre information leaks from the rhythm
features, TRIA will not apply the specified timbre. If there
exists a modality gap between drums and sound gestures
within the rhythm feature representation, TRIA will strug-
gle to map sound gestures to plausible drum generations.

The simplest rhythm representation satisfying these cri-
teria is a one-dimensional sequence of loudness estimates,
which captures onset information similar to GrooVAE [3].



F1 Snare ↑ F1 Kick ↑
Model 30ms 100ms 30ms 100ms

Random anchor 0.04 0.15 0.09 0.29
MelodyFlow0.0 0.08 0.16 0.11 0.19
MelodyFlow0.1 0.11 0.13 0.13 0.18
MelodyFlow0.2 0.19 0.23 0.21 0.23
TRIA1Band 0.23 0.35 0.38 0.50
TRIA2Band* 0.32 0.47 0.52 0.66
TRIA2Band-NA 0.10 0.17 0.47 0.62
TRIA3Band 0.33 0.50 0.61 0.71
TRIA4Band 0.30 0.47 0.59 0.72

Table 1. F1 scores of automatic snare and kick transcrip-
tions of MelodyFlow and TRIA generations from anno-
tated AVP beatbox recordings at 30ms and 100ms onset
tolerances. Higher scores indicate generations preserve the
placement of kicks and snares from beatbox recordings.

However, researchers have found that onset representations
fail to adequately capture relationships between multiple
elements within percussion patterns and human sound ges-
tures [10, 11] – for instance, distinct kick and snare vo-
calizations within a beatbox recording may be “flattened”
into indistinguishable loudness spikes, making it difficult
for TRIA to faithfully map the beatbox to drums. On the
other hand, if the rhythm feature representation is too fine-
grained, e.g. a full spectrogram, it will leak timbre infor-
mation from the rhythm prompt and cause TRIA to ignore
the timbre prompt. Additionally, drums and sound ges-
tures will likely manifest distinctly in fine-grained feature
representations, causing a train-inference mismatch.

To address these potential pitfalls, we propose a rhythm
feature representation based on a two-band spectrogram
with an adaptive splitting frequency. We start with an 80-
bin mel-spectrogram of the rhythm prompt audio and com-
pute a splitting frequency that equally divides energy into
low and high bands, summing all bins within each band.
We then standardize each band independently, apply a sig-
moid nonlinearity to bound all values to [0, 1], and quantize
all values to 33 steps (0, 1

32 , 2
32 , ..., 1) within this range.

Our motivation for this representation is twofold. First,
a two-voice representation allows core elements of drum
recordings and sound gestures to manifest distinctly, but
lacks sufficient detail to leak timbre information or distin-
guish between drum recordings and sound gestures. Sec-
ond, two-voice or “dualized” rhythm representations have
been explored previously for the analysis and generation
of drum patterns in the symbolic domain [10–12]. We ex-
tend this line of inquiry by evaluating the efficacy of audio-
derived dualizations for audio generation.

4. EXPERIMENTS

We empirically validate TRIA’s ability to map sound ges-
tures to full-drumkit recordings in user-specified timbres
across two specific sound gesture types (beatboxing and

MFCC-Sim
Model Rhythm ↓ Timbre ↑ Random

MelodyFlow0.0 0.88 - - 0.81
MelodyFlow0.1 0.92 - - 0.86
MelodyFlow0.2 0.96 - - 0.85
TRIA1Band 0.85 0.95 0.87
TRIA2Band* 0.85 0.96 0.87
TRIA2Band-NA 0.83 0.93 0.85
TRIA3Band 0.86 0.95 0.87
TRIA4Band 0.84 0.96 0.86

Table 2. Timbral similarity between model outputs, in-
put rhythm/timbre prompts, and random drum recordings
as measured by time-averaged MFCC cosine similarity.
Higher-than-random similarity with the rhythm prompt
implies timbre leakage, while higher-than-random similar-
ity with the timbre prompt implies prompt adherence.

tapping). We conduct both subjective human evaluations
and objective evaluations of generation quality and adher-
ence to rhythm and timbre prompts.

4.1 Models

TRIA: In addition to the TRIA system described in Sec-
tion 3 (TRIA2Band*), we validate our choice of rhythm
feature representation by comparing variants of TRIA
trained on 1-band (TRIA1Band), 2-band with no adaptive
frequency split (TRIA2Band-NA), 3-band (TRIA3Band), and
4-band rhythm features (TRIA4Band).

MelodyFlow: we compare TRIA to MelodyFlow [2],
a state-of-the-art text-prompted music editing system.
MelodyFlow can apply text-specified timbres to sound ges-
tures using regularized latent inversion, which maps an
encoded sound gesture to an initial noise estimate and
then resynthesizes it conditioned on the text prompt via
flow-matching. This is done by a 1-billion parameter
transformer model trained on a mix of private and li-
censed music totalling 20, 000 hours. The degree to which
MelodyFlow preserves the structure of the rhythm prompt
can be coarsely controlled by specifying the “target flow
step” for inversion, with 0.0 corresponding to full noising
and 1.0 corresponding to no noising (where the audio is
left unaltered). In our experiments we compare target flow
steps of 0.0, 0.1, and 0.2 (MelodyFlow0.0, MelodyFlow0.1,
and MelodyFlow0.2, respectively); we find that higher val-
ues result in negligible adherence to the specified tim-
bre. We use the default settings of 128 inference steps,
“Euler” solver, and ReNoise [28] regularization strength
0.2. To allow fair comparisons with TRIA, we downmix
MelodyFlow generations from stereo to mono and down-
sample from 48kHz to 44.1kHz.

4.2 Datasets

We evaluate both TRIA and MelodyFlow on rhythm
prompts drawn from two datasets of sound gestures: AVP



Model KADPANN ↓ KADCLAP ↓
TRIA1Band 6.95 6.81
TRIA2Band* 4.56 5.05
TRIA2Band-NA 6.61 10.63
TRIA3Band 4.53 5.46
TRIA4Band 4.14 4.61

Table 3. Kernel Audio Distance (KAD) between a set of
500 generations from each model and a reference distribu-
tion of 500 drum excerpts from MoisesDB; lower scores
indicate better audio quality.

[29], containing 56 amateur beatbox improvisations across
28 participants and 2 conditions with human-annotated
transcriptions; and TapTamDrum [11], containing 1116
two-tone tapping imitations of drum beats across 4 par-
ticipants. To avoid overlap with TRIA’s training data, we
sample audio timbre prompts from the MoisesDB dataset
[30], which contains drum stems from 240 commercial-
quality music tracks. Because MelodyFlow requires tim-
bre specification via text rather than audio prompts, we
generate 50 descriptions of acoustic and electronic drum
kit timbres using GPT-4.5 [31] which we manually in-
spect to ensure quality and diversity. Due to the lack of
available drumkit timbre description datasets and our diffi-
culty in obtaining diverse captions from drum audio using
existing multimodal models [32], we settle on these syn-
thetic descriptions as a reasonable approximation of “plau-
sible" text prompts, and consult with the MelodyFlow au-
thors to ensure descriptions are formatted appropriately for
the model. In all experiments, we sample 2-second tim-
bre prompts for TRIA and generate from rhythm prompts
trimmed to a maximum duration of 4 seconds.

4.3 Subjective Evaluation

We first aim to understand how human listeners rate
TRIA’s translations of sound gestures to drums when
compared to the state-of-the-art model MelodyFlow. To
this end, we conduct a listening evaluation utilizing Re-
SEval [33], a framework for subjective evaluation tasks
on crowdworker platforms; we recruit evaluators through
the online research platform Prolific 2 . We evaluate the
TRIA2Band* and MelodyFlow0.2 variants, as we find that
these models provide a good balance of adherence to both
rhythm and timbre prompts.

Data Preparation: We prepared 80 sets of short (3–
4 second) audio clips. Each set contained (1) a refer-
ence sound gesture serving as a rhythm prompt, drawn ei-
ther from the AVP “personal” condition (beatboxing) or
TapTamDrum (tapping); (2) a TRIA generation from the
rhythm prompt; (3) a MelodyFlow generation from the
rhythm prompt; and (4) a random MoisesDB drum excerpt,
unrelated to the rhythm prompt, as a low anchor. We gen-
erated these 80 sets using 10 rhythm prompts (5 beatbox-
ing, 5 tapping) and 8 timbre prompts per rhythm prompt.

2 https://www.prolific.com/

TRIA’s audio timbre prompts were drawn randomly from
MoisesDB drum excerpts, while MelodyFlow’s text tim-
bre prompts were drawn from the aforementioned set of
50 generated timbre descriptions. To ensure broadly com-
parable timbres across generations, we restricted our audio
timbre prompts to acoustic drum kit recordings and our text
prompts to descriptions of acoustic drum kit timbres.

ABX Trials: We leveraged the findings of Cartwright et
al. [34, 35] and deployed pairwise comparison evaluations
using remote crowdworkers. In our study, crowdwork-
ers performed ABX trials: they heard a reference rhythm
prompt (“X”) and were randomly presented with two clips
(“A” and “B”) from the corresponding (1) TRIA genera-
tion, (2) MelodyFlow generation, or (3) a random drum
excerpt to act as a low anchor. They were then asked to
select “A” or “B” given the criteria:

Select which of the two choices is a more mu-
sically pleasing translation from the reference
clip to drums that captures the original rhythm
and groove of the reference clip.

Full coverage of our 80 sets required 3 pairwise com-
parisons per set: TRIA vs. MelodyFlow, TRIA vs. Ran-
dom Excerpt, and MelodyFlow vs. Random Excerpt. We
required 5 listeners evaluate each comparison, resulting in
80× 3× 5 = 1200 total trials. From our ABX results, we
computed the win rate of TRIA and MelodyFlow on each
dataset and evaluated the statistical significance of the in-
dicated listener preference. We present the results of our
subjective evaluation in Figure 3.

Participant Recruitment: We recruited 120 US
English-speaking human listeners with an approval rating
of ≥ 95% and a record of completing 100+ prior tasks
on Prolific. Each listener evaluated 10 randomly assigned
ABX pairwise comparisons. To ensure data quality, partic-
ipants had to pass a listening test assessing tone sensitivity
from 55 Hz - 10 kHz [36], along with attention checks.
They were paid $2.50 per set of 10 comparisons, estimated
to be equivalent to $18.75/hour. We excluded participants
who failed the listening test, as well as those who preferred
the Random Excerpt ≥ 80% of the time, as this suggests
they disregarded the given evaluation criterion of rhythm
adherence. Following data cleaning, we had 116 partici-
pants with a total of 1160 evaluation pairs.

4.4 Rhythm Prompt Adherence

To evaluate TRIA’s preservation of the rhythmic structure
of sound gestures when translating to drums, we conduct
an automated transcription evaluation. We sample 250
generations from each MelodyFlow and TRIA variant con-
ditioned on rhythm prompts drawn from the AVP beatbox
dataset, all of which have ground-truth human annotations
of kick drum, snare, and hi-hat vocalizations. We then
transcribe these generations using the pretrained “Frame-
RNN” drum transcription model of Zehren et al. [37]. Fi-
nally, we measure the correspondence between transcribed
and ground-truth kick and snare drum parts using the onset
F1 score with 30ms and 100ms tolerances, as is common in

https://www.prolific.com/


the drum transcription literature [38,39]. Higher F1 scores
indicate tighter correspondence between the kick and snare
vocalizations in the rhythm prompt and the kick and snare
drums in the generated audio. We report results in Table 1.

4.5 Timbre Prompt Adherence

To evaluate TRIA’s treatment of timbre information, we
compute the cosine similarity between time-averaged 80-
dimensional MFCC representations of the generated au-
dio and timbre prompt (indicating adherence to the timbre
prompt), the generated audio and rhythm prompt (indicat-
ing the degree of timbre leakage from the rhythm prompt),
and the generated audio and a random excerpt from Moi-
sesDB drums (as an anchor). While this measurement of
spectral correspondence provides a coarse approximation
of timbral similarity, we find that it captures strong trends
in each model’s treatment of timbre. Because MelodyFlow
allows timbre specification through a text prompt, not an
audio prompt, we can only compute its output similarity
to the rhythm prompt and random excerpt. Our results are
reported in Table 2. We further illustrate the processing of
rhythm and timbre prompts by both systems in Figure 4.

4.6 Audio Quality

To evaluate the realism of generated audio, we compute the
Kernel Audio Distance (KAD) [40, 41] between 500 out-
puts from each method and a reference distribution of 500
random excerpts of MoisesDB drums. Similar to Fréchet
Audio Distance (FAD) [42], KAD measures the similar-
ity of the generated distribution to a reference distribution,
while showing stronger alignment with human quality rat-
ings less bias at small sample sizes. For KAD we con-
sider the “PANN” embedding variant [43], which the au-
thors show is most correlated with human perception, and
the “CLAP-Laion-Music” embedding variant [44], which
leverages a model trained specifically on music. Be-
cause TRIA receives audio timbre prompts from the ref-
erence distribution while MelodyFlow receives text timbre
prompts, we compare only variants of TRIA for fairness.
We report results in Table 3.

5. DISCUSSION

Our experimental results demonstrate TRIA’s efficacy
in translating rhythm gestures to full-drumkit recordings
faithful to the rhythm and timbre prompts. As illustrated
in Figure 3, our subjective evaluation shows no statistically
significant preference between TRIA and MelodyFlow
generations. This is promising given that MelodyFlow is
roughly 25× the size, and trained on 2, 000× the data.
Additionally, both models are strongly preferred to ran-
dom drum excerpts at significance p ≤ 0.001 according to
a two-sided binomial test, indicating that both succeed in
capturing the core groove and structure of rhythm prompts.

The results of our transcription evaluation, presented
in Table 1, show that TRIA strongly outperforms
MelodyFlow in preserving the rhythmic structure of beat-
box sound gestures as indicated by correspondence of kick

Figure 4. Given a rhythm prompt (top) with vocal kick and
snare drum imitations, the “snare” sound can be replaced
by user-provided samples via TRIA’s timbre prompting
ability: (a) a bongo drum, (b) wood cracks, and (c) a noise
burst. Given corresponding timbre prompts in text form,
MelodyFlow adheres more closely to the spectral content
of the rhythm prompt.

and snare placement in the rhythm prompt and generated
audio. While increasing the target flow step improves
MelodyFlow’s rhythm adherence slightly, it still signifi-
cantly underperforms all evaluated TRIA variants. These
results demonstrate the strength of TRIA’s dualized rhythm
feature representation, which outperforms both a 1-band
representation and a non-adaptive 2-band representation
that naively splits the mel spectrogram along its center fre-
quency. Adaptive 3- and 4-band rhythm feature representa-
tions yield diminishing returns as they slightly increase the
accuracy of kick placement, but do not have a meaningful
effect on snare placement. This indicates that a dualized
representation may be sufficient to capture the core rhyth-
mic structure of many sound gestures, while single-voice
representations are likely insufficient.

The results of our timbre evaluation, presented in Table
2, show that TRIA generations exhibit lower spectral cor-
relation with the rhythm prompt than random anchors, and
higher correlation with the timbre prompt than random an-
chors – indicating both a lack of timbre leakage from the
rhythm prompt and strong adherence to the timbre prompt.
In contrast, MelodyFlow generations exhibit higher-than-
random spectral correlation with the rhythm prompt, indi-
cating timbre leakage. We provide examples illustrating
these behaviors in Figure 4: MelodyFlow often mimics the
spectral structure of rhythm prompts, while TRIA effec-
tively utilizes a diverse array of timbre prompts to deter-
mine spectral structure. This audio-prompted timbre map-
ping is a key advantage of TRIA over text-prompted sys-
tems, allowing for more specific examplar-based steering
of generations. Finally, as shown in Table 3, our dualized
rhythm features outperform both 1-band and non-adaptive
2-band features in producing realistic drum audio.

Overall, these results show the promise of our proposed
approach even in small model and data regimes. Direc-
tions for future work include scaling the model and dataset;
leveraging TRIA’s existing capabilities for other inference
paradigms such as inpainting and drums-to-drums conver-
sion; and exploring learnable dualized rhythm features.
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7. ETHICS STATEMENT

In this section we acknowledge (1) the broader ethical im-
plications of generative music models in the context of our
work, (2) the ethical implications of using crowdworkers
to perform our subjective evaluation, and (3) our position-
ality as authors of this work.

7.1 Broader Ethical Implications

A recent work on the ethical implications of generative au-
dio models [45] identified a set of potential harms specific
to generative music models: (1) loss of agency and author-
ship, (2) stifling of creativity, (3) predominance of western
bias, (4) cultural appropriation, (5) copyright infringement,
and (6) climate impact of these models; we address this
work with regard to each of these six harms.

This work is intended to provide creators with the abil-
ity to turn any sound gesture into a drum beat with their
desired timbre. We see this as a means to provide music
creators with additional agency; however, we do acknowl-
edge that there is the (1) potential for removing agency
or (2) stifling the creativity of percussion composition and
production.

We recognize that our work is trained on a small dataset
of drums and thus performs best with timbres present in
that dataset, and so (3) may perform poorly with out-of-
domain timbres such as traditional eastern music percus-
sion instruments. This is a limitation of the dataset and
current iteration of TRIA but not the proposed method it-
self, as future work could train TRIA on non-western drum
beats to overcome this limitation.

In its current iteration, we do not believe there is a
strong potential for (4) cultural appropriation with TRIA;
however, if someone were to re-train TRIA on a dataset
of percussion from a culture to which they do not belong,
it would enable that act. In regard to (5) potential for
copyright infringement, TRIA was trained on MusDBHQ-
18 [1], which is licensed for any educational purposes. If
TRIA were to be used for commercial purposes, it would
require re-training on proprietary datasets or otherwise
non-copyrighted work in order to protect the copyright
holders of these tracks, though we are not proposing this
work be used for commercial purposes.

Finally, we acknowledge (6) all generative models have
an environmental impact—for transparency as encouraged
by [46], we documented our computational resources used
for training, training time, and number of parameters,
which in all cases are far less than needed for competing
models such as MelodyFlow. Based on our 4× NVIDIA
A10G GPUs (150W) and 27 hours of training time, we es-
timate each training run has an energy cost of 16.2 kWh.
For comparison, MelodyFlow was trained on 8× H100
96GB GPUs (350W), with no reported training time. If we

assume conservatively an equal training time of 27 hours,
then one MelodyFlow training run would cost at least 280
kWh, or at a minimum 17× the energy consumption of
TRIA.

7.2 Crowdworkers

Our subjective evaluation utilizing human listeners was ap-
proved (and determined to be exempt) under Institutional
Review Board at the host university of the first author. We
also ensured that each evaluator was paid a fair wage with
an estimated hourly pay of $18.75, which is above the min-
imum wage for every city in the United States. We also
paid those who failed the listening test and thus could not
partake in our study $0.50 for their time. We used crowd-
workers for this evaluation, and acknowledge that ethical
use of crowdworkers goes beyond fair pay [47]; we tested
the study among the author team prior to launch to en-
sure there would be no burden to workers beyond potential
boredom and made sure the evaluators knew they could
stop the study at any time.

7.3 Positionality

Finally, we would like to address the positionality of the
authors. This is a diverse team of researchers, though we
are predominantly from western developed countries (with
one author being from the Global South). We are all both
musicians and AI researchers, and thus share a mentality
that AI technologies used for generative music can have
a net positive impact as long as they are tools used to em-
power and assist musicians and creators rather than replace
them. We acknowledge a bias in the conduct of this work
reflecting an overall positive attitude towards AI technolo-
gies in this regard, and recognize that this is not a universal
belief.

Ultimately, we believe that the benefits of this work far
outweigh these potential risks, and we took care to keep
them in mind as we conducted this research.
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